

Feb. 6, 2018

Methods for recording neuronal activity

Prof. Tom Otis t.otis@ucl.ac.uk

From 'animal electricity'... to how nerves work

A CONTRACTOR

Galvani, 1780

Galvani, 1791

First electrical recordings of a nerve impulse

frog sciatic nerve

Fig. 3. The action currents of the bull frog sciatic, as recorded by the Braun tube and string galvanometer, plotted in rectangular linear coördinates. A, B, C, Braun tube records; a, b, c, string galvanometer records. A, a, shock; B, b, action current; C, calibration with a constant current of 15 mv.; c, with one of 3.75 mv.

American J. Physiol., 1922

Herbert Gasser

Joseph Erlanger

(A)	Herbert Spencer Gasser		All	\$	Since 2013
S.	Rockefeller Institute for Medical Research, New York neurophysiology	Citations h-index i10-index	7692 39 57		406 10 11
TITLE				CITED BY	YEAR
Electrical sign J Erlanger, HS G	s of nervous activity asser			957	1937
Axon diamete HS Gasser, H Gr American Journa	rs in relation to the spike dimensions and the conduction velo rundfest al of PhysiologyLegacy Content 127, 393-414	ocity in mammalian ,	A fibers	553	1939
The dynamics HS Gasser, AV H Proceedings of t	of muscular contraction Hill he Royal Society of London. Series B, containing papers of a …			535	1924
The role of fib HS Gasser, J Erl American Journa	er size in the establishment of a nerve block by pressure or c anger al of PhysiologyLegacy Content 88, 581-591	cocaine		464	1929
The role playe potential wave HS Gasser, J Erl American Journa	ed by the sizes of the constituent fibers of a nerve trunk in de anger al of PhysiologyLegacy Content 80, 522-547	termining the form o	of its action	403	1927
Properties of o HS Gasser The Journal of go	dorsal root unmedullated fibers on the two sides of the gangli eneral physiology 38 (5), 709-728	ion		369	1955
Potentials pro HS Gasser, HT C	duced in the spinal cord by stimulation of dorsal roots. Graham			339	1933

First recordings of light-evoked activity in optic nerve

Conger eel optic nerve

"I had arranged electrodes on the optic nerve of a toad in connection with some experiments on the retina. The room was nearly dark and I was puzzled to hear repeated noises in the loudspeaker attached to the amplifier, noises indicating that a great deal of impulse activity was going on. It was not until I compared the noises with my own movements around the room that I realised I was in the field of vision of the toad's eye and that it was signalling what I was doing."

Mechanism of the nerve impulse

Squid giant axon

Nature, 1939

Alan Hodgkin

Andrew Huxley

Hodgkin Huxley model of the action potential

http://nerve.bsd.uchicago.edu/

Hodgkin, Huxley, and Katz, J. Physiol., 1952

Intracellular measurements with a microelectrode

Ag/AgCl wires are standard in physiological contexts due to their excellent bidirectional ionic mobility, stability

EQUIVALENT CIRCUIT

Microelectrode methods for intracellular recording

'sharp' microelectrode

3 M KCl, 3 M K Acetate 80-100 M Ω

whole-cell patch pipette

physiological internal e.g. 130 K MeSO₄ 2-5 M Ω

Patch clamping

Bert Sakmann

Erwin Neher

https://youtu.be/M3xN4Ihmt7U

from Purves et al, Neuroscience 5th Ed. 2012

Microelectrode methods for intracellular recording

Rat dentate gyrus granule cells

FIG. 4. Comparison of membrane voltage responses to current steps in GCs recorded with sharp electrode vs. whole-cell patch electrode. Sharp electrode filled with 3 M potassium acetate. The differences in R_N and τ_m can be appreciated by visual inspection of the records. Spike threshold is similar for the 2 recording methods.

FIG. 5. Membrane voltage vs. injected current for 31 GCs recorded in whole-cell method and 10 GCs recorded with sharp electrodes; points are means \pm SE. Voltage was determined 180 ms after start of current pulse. Error bars indicate SE. Lines are fitted by least-squares method. Regions of linearity determined by eye.

Staley et al., J. Neurophysiol. 67: 1346, 1992

Metal electrodes

or 0.005" Tungsten electrode, Parylene-coated

tungsten iridium platinum/iridium

glass-coated polyimide-coated

Recording from populations of single neurons: tetrodes

see Recce & O'Keefe, 1989

Buzsáki, Nat. Neurosci. 2004

Recording from populations of single neurons: tetrodes

Peak Amplitude X

Late Peak Amplitude X

O'Keefe & Recce, 1993

Halverson et al., J. Neurosci. 35:7182-32, 2015

Utah array to Neuropixel probes

R. Normann, Uni. Utah see also <u>https://www.youtube.com/watch?v=ItI6PqSTdHQ</u> & Kelly et al, *J. Neurosci.* **27**:261-74, 2007

Jun et al., Nature 2017

INSIGHT REVIEW

Electrophysiology in the age of light

Massimo Scanziani¹ & Michael Häusser²

Small molecule Ca⁺⁺ dyes: A range of affinities and kinetics

Table 1. SM Dye Dissociation Constants for Calcium

0.16

K_D (μM)

Reference

1995)

(Kao and Tsien 1988)

(Konishi and Watanabe

(Zhao et al. 1996)

(Haugland 1996)

Magnesium green	7
Fura dextran (10,000 MV	V) 0.52
Calcium green dextran	
(3,000 MW)	0.54
Fluo-4 dextran (10,000	
MW)	3.1

Small Molecule dye

Fura-2

Dye imaging from a presynaptic terminal

50 msec

20 msec

Kreitzer et al., Neuron 27:25 (2000)

Ca⁺⁺ dyes in vivo

Adult (6-month-old)

Garaschuk & Konnerth, Nature Protocols 1:380-6, 2006

Optogenetic *sensors* and *actuators*

Miesenböck, Science, 2009

Conditional genetics and lab mice

Breeding strategy

Indicator mouse carrying indicator gene in Cre-dependent configuration

Indicator

Viral strategy

from Knopfel, *Nat. Rev. Neurosci.* 2012

A revolution in biotechnology caused by a protein from a jellyfish

Green fluorescent protein

2008 Nobel prize in Chemistry: Shimomura, Chalfie, & Tsien

Fundamentals of fluorescence

Figure 11.3

Normalized absorption and fluorescence emission spectra of fluorescein conjugated to IgG. Both spectra span a wide range of wavelengths. Fluorescein has an absorption/excitation peak at 494 nm and looks yellow-green to the eye, but actually fluoresces at wavelengths ranging from blue to red with a peak at 518 nm. The difference in nanometers between the excitation and emission maxima is called the Stokes shift. The molar extinction coefficient is measured at the peak of the absorbance spectrum as indicated in the figure.

From Ch.11, Fundamentals of Light Microscopy and Electronic Imaging, 2nd Ed., Murphy & Davidson

Multicolored fluorescent proteins

FABLE 11.2	Physical Properties of Useful Fluorescent Proteins							
Protein ^a	Color ^b	Excitation (nm)	Emission (nm)	Brightness ^c	Photostability ^d	Filter Set		
EBFP2	Blue	383	448	18	++	DAPI		
mCerulean	Cyan	433	475	17	++	CFP		
mTurquoise	Cyan	433	474	25	+++	CFP		
mTFP1	Teal	462	492	54	+++	CFP		
mEGFP	Green	488	507	34	++++	FITC/GF		
mEmerald	Green	487	509	39	++++	FITC/GF		
mVenus	Yellow	515	528	53	++	FITC/YF		
mCitrine	Yellow	516	529	59	++	FITC/YF		
mKO2	Orange	551	565	40	+++	TRITC		
tdTomato	Orange	554	581	95	+++	TRITC		
TagRFP	Orange	555	584	48	++	TRITC		
mApple	Orange	568	592	37	+++	TRITC		
mCherry	Red	587	610	17	+++	TxRed		
mKate2	Far-Red	588	633	25	++	TxRed		
mPlum	Far-Red	590	649	3.2	+++	TxRed		
mNeptune	Far-Red	600	650	13	++++	Cy5		

^a Common literature abbreviation.

^b Spectral class. ^c Product of the molar extinction coefficient and the quantum yield $(mM \times cm)^{-3}$.

^d Relative to mEGFP (++++).

^e Recommended filter set.

From Murphy and Davidson, Ch 11

FIG. 2. Schematic drawing of the overall fold of GFP (12) modified to show starting points of fluorescent circular permutations (\bigcirc), the linker (GGTGGS) connecting the original N and C termini, and the approximate location of the chromophore (open star, residues 65–67). Locations with two circles indicate where circular permutations with two different ending amino acids were isolated (Table 1).

	M GGT	GGS			
a His6	E(G,Y,C)FP(145-238)	E(G,Y,C	C)FP (1-1	44) = cpE	GFP, cpEYFP, cpECFP
		EI	HQ GG EL		vellev complete 0.0
b Hise	CPECFP	Xenopus (CaM M	EYFP (1-2	38) yellow cameleon 3.2 using cpECFP
	GGTGG	3S			(drawn at half scale)
c His6	EGFP(x-238)	EGF	FP(1-y)	rando	om circular permutations
		QGJ			EL
d His6	EYFP (1-1	144)	Xend	pus CaM	EYFP(146-238)
		QGJ			EL
e kz	EYFP (1-1	144)	Xen	opus CaM	EYFP(146-238) -
		ĢGŢ	EL		insertions of CaM or
f His6	EYFP (1-	144) 2	zif EYFF	P(146-238)	-zinc finger into EYFP

FIG. 1. Schematic structures of major new constructs. (a) Designed circular permutations of EGFP, EYFP, and ECFP starting at Y145M. His₆ indicates the polyhistidine tag MRGSHHHHHHGMASMTG-GQQMGRDLYDDDDKDP. Linkers and substitutions are shown above the main sequence. (b) Yellow cameleon 3.2 (YC3.2) incorporating cpECFP instead of ECFP. This sequence is drawn at half the scale of all the other constructs. M13 is the CaM-binding peptide derived from skeletal muscle myosin light chain kinase (7). (c) Random circular permutations of EGFP. The successful values of x and y are shown in Table 1. (d and e) Insertions of CaM in place of Y145 of EYFP as expressed in bacteria (d) for *in vitro* purification or in HeLa cells (e) for *in situ* monitoring of cytosolic Ca²⁺. kz, Kozak sequence (10) for optimal translation initiation. (f) Insertion of a zinc finger (zif), residues 334–362 of zif268 (8), in place of Y145 of EYFP.

An apt nickname for this construct is "camgaroo1," because it is yellowish, carries a smaller companion (calmodulin) inserted in its "pouch," can bounce high in signal, and may spawn improved progeny.

Baird et al., PNAS 96:11241-46, 1999

The GCaMP family of calcium sensors

А EGFP (1-144) N-6xHis-Xpress-EK M15 EGFP (149-238) CaM (2-148) C GGTGGS TR MVD В GCaMP1 described in 2001: С CDEGFP CPEGFP Ca2+-CaM Ca2+-CaM

Nakai et al.,, Nat. Biotech. 19:137

GCaMP6: Chen et al., 2013 Nature, 499:295

See also **B-GECO** and **R-GECO**

crystal structure of GCaMP2: Akerboom et al., JBC 284:6455, 2009

Imaging while the mouse navigates a virtual reality maze

Dombeck et al., Nature Neuroscience 13:1433

CAMPARI, a conditional integrator of neural activity

Fusque et al. Science, 347:755-60, 2015

CAMPARI performance *in vivo*

Fusque et al. Science, 2015

Optical sensors of voltage

A non-genetic voltage sensor that relies on FRET-based quenching

Bradley et al., J. Neurosci., 2009

Two photon compatibility, high SNR

Fink et al., PLOS One, 2012

 λ = 940 nm 3 μ M DPA

Laser spot photometry from different regions of the same neuron

Bradley et al., J. Neurosci., 2009

Acker & Loew, Ch. 11 Chemical Neurobiology. Meth. Mol. Biol., 2013, doi.org/10.1007/978-1-62703-345-9_11

Small molecule voltage dyes

A comparison of genetic and non-genetic optical voltage sensors

Molecule	Approx △F/F per	Approx response time	Comments
	100 mV	0	0
VSFP 2.3 ¹	9.5%	78 ms	Ratiometric ($\Delta R/R$)
VSFP 2.4 ¹	8.9%	72 ms	Ratiometric ($\Delta R/R$)
VSFP 3.1 ²	3%	1-20 ms	Protein
Mermaid ³	9.2%	76	Ratiometric ($\Delta R/R$)
SPARC ⁴	0.5%	0.8 ms	Protein
FlaSh ⁵	5.1%	2.8 - 85 ms	Protein
Flare ⁶	0.5%	10 - 100 ms	Protein
PROPS ⁷	150%	5 ms	Protein
di-4-ANEPPS ⁸	8%	$< 1 \mathrm{ms}$	Dye
di-8-ANEPPS 9	10%	$< 1 \mathrm{ms}$	Dye
RH237 ¹⁰	11%	< 1 ms	Dye
RH421 ¹¹	21%	$< 1 \mathrm{ms}$	Dye
ANNINE-6plus ¹²	30%	< 1 ms	Dye
hVOS ¹³	34%	<1 ms	hybrid
DiO/DPA ¹⁴	56%	< 1 ms	hybrid

Supplementary Table 1 Approximate characteristics of fluorescent voltage indicating proteins. In some cases numbers were estimated from published plots. The table contains representative members of all families of fluorescent indicators but omits many.

from Supplementary Material Kralj et al., Nat. Methods, 9: 90-5, 2011; see also Table 1 in Xu et al, Curr. Op. Chem. Biol., 2017

Genetically encoded voltage indicator (GEVI) strategies

Knopfel, Nat. Rev. Neurosci., 2012

Circularly-permuted FP-based GEVIs

Xu et al. Curr. Opin. Chem. Biol. 39: 1-10 (2017)

Opsin-based GEVIs

Xu et al. Curr. Opin. Chem. Biol. 39: 1-10 (2017)

Archaerodopsin, an opsin-based GEVI

Table 1	Optical	and	electrical	response	of	Arch	and	Arch((D95N)	1
---------	---------	-----	------------	----------	----	------	-----	-------	--------	---

	λ _{max} absorbance (nm)	λ _{max} emission (nm) ^a	ε ₆₃₃ (M ⁻¹ cm ⁻¹) ^b	QY ^c	Photostability relative to eGFP ^d	pK _a of Schiff base ^e	$\tau_{response}$ (ms) ^f	Noise in Ŷ _{FL} (µV Hz ^{-0.5}) ^g	Photo-current
Arch	558	687	6,300	9 × 10 ⁻⁴	0.25	10.1	<0.5	625	Yes
Arch(D95N)	585	687	37,500	4×10^{-4}	0.1	8.9	41	260	No
	-2008 M			\bigcirc	2007 12			7.48.076435	

^c QY for eGFP is ~0.65 and for mNEON is ~0.8

Kralj et al., Nat. Methods, 9: 90-5, 2011

A FRET-based GEVI, Ace2N-mNeon

Gong et al., Nat. Comm. 5: 3674, 2014; Gong et al., Science, 350: 1361, 2015

The current state of the art- the cpGFP-based GEVI ASAP1/2f

Lee & Bezanilla, Biophys. J. 113:2178-81, 2017

Why *in vivo* optical voltage measurements are challenging & GEVIs are not quite ready yet for recording single trial APs...

- Sensors have just become fast enough
- Sensors are not yet bright enough
- The brevity of AP signals makes measurement tough (photon counts, instrumentation, etc.)
- Broad optical spectra (see FRET-based GEVIs) present challenges
- Sensors rely on charges in the membrane (=capacitive load)

Discussion: which approach best suits the experiment?

Ca⁺⁺ dye, ratiometric emission

Ca⁺⁺ dye, ratiometric excitation

